Dipper Throated Algorithm for Feature Selection and Classification in Electrocardiogram
نویسندگان
چکیده
Arrhythmia has been classified using a variety of methods. Because the dynamic nature electrocardiogram (ECG) data, traditional handcrafted approaches are difficult to execute, making machine learning (ML) solutions more appealing. Patients with cardiac arrhythmias can benefit from competent monitoring save their lives. Cardiac arrhythmia classification and prediction have greatly improved in recent years. Arrhythmias category conditions which heart's electrical activity is abnormally rapid or sluggish. Every year, it one main reasons mortality for both men women, worldwide. For arrhythmias, this work proposes novel technique based on optimized feature selection K-nearest neighbors (KNN) classifier. The proposed method makes advantage UCI repository, 279-attribute high-dimensional dataset. approach dividing patients into 16 groups electrocardiography dataset’s features. purpose design an efficient intelligent system employing dipper throated optimization categorize patients. This comprehensive outperforms earlier methods presented literature. achieved accuracy 99.8%.
منابع مشابه
An Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer systems science and engineering
سال: 2023
ISSN: ['0267-6192']
DOI: https://doi.org/10.32604/csse.2023.031943